
Bridging a Shortcut to Exempt the Software Tax
Charged on Logging I/Os

Author: Yanpeng Hu, Yunxin Yang, Li Zhu and Chundong Wang

ShanghaiTech University

1

Outline

• Introduction

• Background

• Motivation

• Design

• Experiments

• Conclusion

2

Introduction

• Logging (WAL) ensures database durability but causes high I/O overhead

• fsync/fdatasync syscalls for WAL are slow, bottlenecking databases like OceanBase

• High speed SSDs reduce I/O time, but software tax dominates (60.2% latency)

• Existing solutions (SPDK, kernel-bypass) need complex software/hardware changes
.

3

Introduction

• Key Insight:

• Many databases use preallocated logs

• Preallocated log files have stable layouts
• No resizing/permission changes.

• Éxitos: Uses eBPF to bypass software layers
• Maps file offsets to disk block LBAs efficiently

• Redirects I/O via ioctl to SSD driver

4

Introduction

• Key Insight:

• Many databases use preallocated logs

• Preallocated log files have stable layouts
• No resizing/permission changes.

• Éxitos: Uses eBPF to bypass software layers
• Maps file offsets to disk block LBAs efficiently

• Redirects I/O via ioctl to SSD driver

• Benefits:
• No app/kernel intrusive changes; POSIX-compatible

• Works with SATA/NVMe SSDs.

• 2.3× faster than vanilla I/O stack

5

Outline

• Introduction

• Background

• Motivation

• Design

• Experiments

• Conclusion

6

Background

• Software tax: OS/filesystem overhead during I/O

• Preallocation for database logs:
• Reserves contiguous disk blocks upfront
• Avoids runtime allocation/journaling

7

Background

• Software tax: OS/filesystem overhead during I/O

• Preallocation for database logs:
• Reserves contiguous disk blocks upfront
• Avoids runtime allocation/journaling

• Key insight:
• Preallocated log files = stable layouts

• eBPF (OS kernel tool):
• Safely runs custom code in kernel
• Hooks syscalls (e.g., file write, fdatasync)

8

Outline

• Introduction

• Background

• Motivation

• Design

• Experiments

• Conclusion

9

Motivation - Why Optimize Logging?

O1: Preallocation boosts performance

①Throughput ↑ 4.7× on NVMe SSD

②Reason: removes ext4 journaling and

fragmentation overhead

=>Databases use preallocated logs

10

Motivation - Why Optimize Logging?

O1: Preallocation boosts performance

①Throughput ↑ 4.7× on NVMe SSD

②Reason: removes ext4 journaling and

fragmentation overhead

=>Databases use preallocated logs

11

60.2%

• O2: But software tax still
dominates:

• ①60.2% of I/O latency on fast
NVMe SSDs for software tax

Motivation - Why Optimize Logging?

O2: But software tax still
dominates:

• ①60.2% of I/O latency on fast
NVMe SSDs for software tax

O1: Preallocation boosts performance

①Throughput ↑ 4.7× on NVMe SSD

②Reason: removes ext4 journaling and

fragmentation overhead

=>Databases use preallocated logs

12

46.3% ②Filesystem => 46.3% of total time

Motivation - Why Not Existing Solutions?

No Hardware
Change

Non-Intrusive
Kernel

Transparent
Support for DBs

Filesystem
Compatibility

Supported
SATA SSD

SPDK √ √ x x √

NVMeDirect √ x x x x

Moneta-D x x √ √ √

BypassD x x √ √ x

Éxitos √ √ √ √ √

O3: State-of-the-art limitations

SPDK/NVMeDirect: Break POSIX, need app rewrites I/O layer

BypassD/Moneta-D: Need intrusive kernel changes + special hardware

13

Motivation - Why Not Existing Solutions?

No Hardware
Change

Non-Intrusive
Kernel

Transparent
Support for DBs

Filesystem
Compatibility

Supported
SATA SSD

SPDK √ √ x x √

NVMeDirect √ x x x x

Moneta-D x x √ √ √

BypassD x x √ √ x

Éxitos √ √ √ √ √

Éxitos opportunity:

Preallocated logs = stable layouts for database logs in filesystems and disks

→ Safe to bypass OS without intrusive changes in kernel and hardware

14

Outline

• Introduction

• Background

• Motivation

• Design

• Experiments

• Conclusion

15

Éxitos Architecture

• 3 main components:

• ①Maco:

• Map file offset → LBA during initial

step

16

Éxitos Architecture

• 3 main components:

• ①Maco:

• Map file offset → LBA during initial

step

• ② eBPF Hooks:

• Trap write/fdatasync of the App

process like OceanBase

17

Éxitos Architecture

• 3 main components:

• ①Maco:

• Map file offset → LBA during initial

step

• ② eBPF Hooks:

• Trap write/fdatasync of the App

process like OceanBase

• ③Direct Dispatch: ioctl to SSD driver

18

Metadata Magic with Maco

Maco (Metadata Collector):

Stores {file descriptor, offset → SSD LBA} in

eBPF map

Built when opening preallocated log files

19

Metadata Magic with Maco

Maco (Metadata Collector):

Stores {file descriptor, offset → SSD LBA} in

eBPF map

Built when opening preallocated log files

Time complexity?

O(1) because mapping is stable

Additional memory usage?

Preallocation → contiguous LBAs → few

records for one big file

Extra memory overhead is low

Crash-Safety?

Rebuilt from filesystem metadata after reboot

20

Bypassing I/O & Permissions

• For write:
• Use Maco mapping → send data via ioctl to bypass software layers

• For fdatasync:
• Send NVMe-flush (NVMe) command to ensure durability

• Dual Permission Modes:

• Fast mode(Éxitos): Checks permissions only at file open

• Strict mode(Éxitos-S) : Validates permissions per I/O request

21

Outline

• Introduction

• Background

• Motivation

• Design

• Experiments

• Conclusion

22

Evaluation Setup

• Hardware:
• HP Z2 G4: Intel i9-9900K (16c), 64GB RAM
• SSD: Samsung PM1725a (NVMe with PLP)

• Software:
• Ubuntu 22.04.1, Linux 6.6.5
• OceanBase v4.3.3

• Baselines:
• Vanilla: Standard I/O stack
• BypassD: With software-emulated IOMMU
• Exitos/Exitos-S

• Why BypassD?
• Only competitor with official software simulation for DBs
• Others:

• Kernel/database code intrusive changes
• Special hardware
• No implementation for the most of the DBs

23

Micro-Benchmarks - Fio Simulating Logging

We chose Fio to simulate logging behavior in the database as Micro-benchmarks.

• Test (a): 4KB block size writes + fdatasync
• Éxitos: 2.4× throughput vs. vanilla

24

Micro-Benchmarks - Fio Simulating Logging

We chose Fio to simulate logging behavior in the database as Micro-benchmarks.

• Test (a): 4KB block size writes + fdatasync
• Éxitos: 2.4× throughput vs. vanilla

• Test (b): 16KB block size writes + fdatasync
• Éxitos still beats every baseline
• — even under the SSD throughput ceiling

25

Micro-Benchmarks - Fio Simulating Logging

We chose Fio to simulate logging behavior in the database as Micro-benchmarks.

• Test (a): 4KB block size writes + fdatasync
• Éxitos: 2.4× throughput vs. vanilla

• Test (b): 16KB block size writes + fdatasync
• Éxitos still beats every baseline
• — even under the SSD throughput ceiling

• Test (c): 4KB block size writes + 16 threads + fdatasync
• Éxitos achieves near-linear scalability under 16 threads
• Outperforms every competitor—zero hardware or kernel modifications required.

26

Macro-Benchmarks - OceanBase with
SysBench

27

Real production workload

Measured directly on OceanBase

under three OLTP workloads:

Write-Only

Read/Write ·

All-Insert

Throughput

• 1 thread (write-only):

2.3 × more ops than vanilla

+31 % average vs. BypassD

Macro-Benchmarks - OceanBase with
SysBench

28

Strict-mode

Only a small overhead for

Éxitos -S (Strict mode)

Scalability

near-linear scalability to 32 threads

Latency

32 clients: -62 % 99-percentile latency

Outline

• Introduction

• Background

• Motivation

• Design

• Experiments

• Conclusion

29

Conclusion - Exitos: Zero-Tax Logging

• Problem: Logging I/Os bottlenecked by 60.2% software tax on fast SSDs.
• Solution: Exitos – eBPF-driven shortcut for preallocated logs:
• Bypasses OS layers via stable LBA mapping (Maco).
• Direct ioctl dispatch to SSD.

30

Conclusion - Exitos: Zero-Tax Logging

• Problem: Logging I/Os bottlenecked by 60.2% software tax on fast SSDs.
• Solution: Exitos – eBPF-driven shortcut for preallocated logs:
• Bypasses OS layers via stable LBA mapping (Maco).
• Direct ioctl dispatch to SSD.

• Impact:

• 2.3× faster OceanBase throughput.
• Software tax slashed to 4.1%.
• No app/kernel/hardware changes

• Future: Adapt to other stable-file workloads.

31

Q&A

• Thanks for your time.

32

